Pi: the ratio of the circumference to the diameter of a circle. The number in decimal form apparently has no end and never repeats. It can only be approximated.
One can approximate to four decimal places (PI=3.1416 ) or to 8 decimal places PI=3.14159265 . The first approximation uses a denominator of 10000 and the second a denominator of 100,000,000
PI ~= 31416 / 10000 = 3.1416
PI ~= 314159265359 / 100000000000 = 3.14159265359
The denominator for the approximation does not have to be a power of 10. 22/7 is a good approximation; the denominator is 7. 355/113 is another good one.
PI ~= 22 / 7 = 3.142857142857
or
PI ~= 355 / 113 = 3.141592920354
355 / 113 is correct to six decimal places. PI can actually be approximated using any number in the denominator, and in general a larger number in the denominator allows you to make a better approximation.
For a computer, it is easist to work in powers of two. Using a denominator of 256 or 65536, the size of byte or word variables, simplifys the calculations required. The best approximations to PI with 65536 as the denominator is,
PI ~= 205888 / 65536 = 3 + 9280 / 65536 = 3.1416015625
which is 8.90891e06 too high, or
PI ~= 205887/65536 = 3 + 9279/65536 = 3.141586303711
which is 6.349879e06 too low, and therefore a little bit better. These are not as good an approximation as 355/113, but still good to several decimal places.
With a denominator of 256 the best we can hope for is:
PI ~= 804 / 256=3 + 36 / 256 = 3.140625
The point here is that we can divide by 256 by simply dropping the last byte of our value. We can divide by 65535 by dropping the last two bytes. So, if we have a math library that can multiply two 16 bit integer numbers and return a 32 bit integer result, we can find X*Pi by simply finding (X*3) + (X*9279) / 65535. Trying to find (X*205887)/65535 will not work because 205887 is larger than 16 bits. Trying to find X * (205887/65535) will not work because only integer math is involved; we would effectivly be asking for X * 3.
Of course, you can do the same thing with many other fractions or values having a fractional part.
Also:
See also:
file: /Techref/method/pi.htm, 2KB, , updated: 2008/6/10 17:16, local time: 2018/10/16 19:18,

©2018 These pages are served without commercial sponsorship. (No popup ads, etc...).Bandwidth abuse increases hosting cost forcing sponsorship or shutdown. This server aggressively defends against automated copying for any reason including offline viewing, duplication, etc... Please respect this requirement and DO NOT RIP THIS SITE. Questions? <A HREF="http://www.piclist.com/techref/method/pi.htm"> Math Methods, Pi</A> 
Did you find what you needed? 
PICList 2018 contributors:
o List host: MIT, Site host massmind.org, Top posters @20181016 RussellMc, Van Horn, David, Sean Breheny, David C Brown, Bob Blick, Neil, Isaac M. Bavaresco, John Gardner, Harold Hallikainen, Denny Esterline, * Page Editors: James Newton, David Cary, and YOU! * Roman Black of Black Robotics donates from sales of Linistep stepper controller kits. * Ashley Roll of Digital Nemesis donates from sales of RCL1 RS232 to TTL converters. * Monthly Subscribers: Gregg Rew. ongoing support is MOST appreciated! * Contributors: Richard Seriani, Sr. 
Welcome to www.piclist.com! 
.