

__

 PEexport.ASM

 PE Export Section Dumper V1.00

 01-29-1996 Sven B. Schreiber sbs@psbs.franken.de

 This is Public Domain Software

__

PLEASE NOTE

PEexport is Public Domain Software and is distributed with the ASM source code included. This software package may be distributed freely on any media including bulletin board systems and Internet hosts, provided that all files are included and no fee is charged for the software. Although all code and documentation belongs to the Public Domain, I strongly recommend that all changes be documented properly, including the name of the author, the date, and what parts have been changed in which way. Feel free to contact me at sbs@psbs.franken.de, 100557.177@compuserve.com, or sbs_msn@msn.com.

DISCLAIMER

This software is provided „as is“ and any expressed or implied warranties, including, but not limited to, the implied warranties of merchantibility and fitness for a particular purpose are disclaimed. In no event shall the author Sven B. Schreiber be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

What is PEexport?

PEexport is a DOS utility to extract exported function names from PE (Portable Executable) files used under the Windows NT and Windows 95 operating systems. The output is directed to the screen, but can easily be redirected to a disk file. PEexport uses both STDOUT and STDERR, so when redirecting the output, only the export data will be sent to the disk, while any info and error messages will continue to show up on the screen.

The PEexport output conforms to the „Windows Profile“ record format (a.k.a. INI file format). This facilitates processing of the data by other utilities after redirecting it to a disk file. Here’s some sample data, extracted from the 32-bit WinSock DLL of Windows NT 3.51:

 [WSOCK32.dll]

 EnumProtocolsA=1110,1111

 EnumProtocolsW=1111,1112

 GetAddressByNameA=1108,1109

 GetAddressByNameW=1109,1110

 GetNameByTypeA=1114,1115

 GetNameByTypeW=1115,1116

 GetServiceA=1118,1119

 GetServiceW=1119,1120

 GetTypeByNameA=1112,1113

 GetTypeByNameW=1113,1114

 ...

The header (in square brackets) gives the name of the PE file under examination, as defined in the export section. It is usally equal to the file name you specified on the command line. The lines following the header are exported function names, as well as the ordinal numbers corresponding to them. The first number is the unbiased ordinal, which is an index into the „Export Address Table“ of the PE file. The second number is the biased ordinal, i.e. it is equal to the former plus the value of the „Ordinal Base“ field in the „Export Directory Table“. Please note that Win32 ordinal numbers are operating system dependent, i.e. numbers extracted from Windows NT DLL’s need not match those from a Windows 95 DLL of the same name.

If you redirect the PEexport output to disk, the resulting file can be used without change as a Win32 import library for the „SBS W32Link“ PE file linker. Hence, PEexport is the ideal tool to build custom import libraries for W32Link. To get a collection of the API’s of the most common Win32 DLLs, you might use the following command sequence:

 PEexport KERNEL32.dll > W32Link.NT

 PEexport USER32.dll >> W32Link.NT

 PEexport GDI32.dll >> W32Link.NT

This will include three library headers, namely [GDI32.dll], [KERNEL32.dll], and [USER32.dll], with the appropriate API entries following them, respectively.

Some PE files, most notably some of the Windows NT core DLL’s, don’t export their functions in a separate .edata section, as the Microsoft PE/COFF specification 4.1 suggests. Instead, they include them in the .text (KERNEL32.DLL, ADVAPI32.DLL) or .rdata (USER32.DLL) sections. To find the exports anyway, PEexport examines the PE „Optional Header Data Directories“ at the end of the PE „Optional Header“, where the relative virtual address (RVA) of the export data is held. Then it loops through the „Section Table“ to identify the section where the data belongs to. This ensures that PEexport always finds the exported function names, where ever they might be buried.

01-29-1996 Sven B. Schreibe
