
© 1999 Scenix Semiconductor, Inc. All rights reserved. - 1 - www.scenix.com

Scenix and the Scenix logo are trademarks of Scenix Semiconductor, Inc.
Microsoft, Windows, and Windows NT are registered trademarks of Microsoft
Corporation.

All other trademarks mentioned in this document are property of their respec-
tive componies.

Application Note 23

Christopher Waters
December 1999
Patents Pending

PPP/UDP Virtual Peripheral
Implementation

1.0 Introduction
This technical note describes how to implement the lower
levels of a TCP/IP networking stack on a Scenix SX com-
munications controller. TCP/IP is usually implemented on
32-bit micro-processors with memory measured in mega-
bytes and is almost unheard of for 8-bit micro-controllers.
Careful structuring of the code to avoid packet buffering
makes Internetworking possible in smaller and cheaper
devices than ever before.

The phenomenal growth in Internet usage has seen a
corresponding increase in the number of hardware
devices capable of communicating using TCP/IP. The
ubiquity of TCP/IP in turn drives the desire for network
stacks in smaller and cheaper devices. The applications
of a TCP/IP capable micro-controller are vast, in effect
any sensory or control device could be communicated
with from any desktop in the world.

In this technical note the source code for a subset of a
TCP/IP stack is described. This stack includes PPP, IP,
ICMP and UDP. Together these protocols are enough to
enable an SX to connect to a TCP/IP router and by
extension, to the rest of the Internet.

The technical note is divided into three sections. The first
gives an overview of TCP/IP and the particular protocols
that the software implements. The second section
describes how to use the software in an application. In
the third section the arrangement of the source code and
how it works are described along with schematics for a
demonstration circuit board.

2.0 The TCP/IP Stack
The collection of protocols for transport of data over the
Internet is commonly known as TCP/IP. In fact it is the
Internet Protocol (IP) which is the fundamental building
block. Transmission Control Protocol (TCP) is an optional
higher level protocol, which just happens to be the most
commonly used. The next diagram shows the commonly
used protocols in the Internet stack. This technical note is
concerned with the protocols without the gray fill.

At the very top layer are application protocols that we are
familiar with using as part of web browsers, chat pro-
grams and telnet clients. The next layer down, the trans-
port layer, provides two methods of data delivery across
the Internet. Reliable, connection-based delivery is pro-
vided by TCP. Unreliable, connection-less delivery is pro-
vided by the User Datagram Protocol (UDP). The Internet
layer provides addressing, quality of service and other
routing options. The Internet Control Message Protocol
(ICMP) which is tightly integrated with IP is a service for
sending messages in response to error conditions. One
facility provided by ICMP is echo which is used by the
Ping program.

At the network access layer the most common protocol is
ethernet which is used for local area networks. The Point-
to-Point Protocol (PPP) is used to encapsulate IP (and
other protocols) over serial links. It is the most commonly
used protocol for dial-up links, such as when you call
your ISP with a modem.

The next sections provide more detail on the protocols
used in this technical note, starting with the network layer
and moving up the stack.

Figure 2-1. Typical Internet Protocol Stack

PPP Ethernet

IP

ICMP

UDP TCP

HTTP FTP

Network Access Layer

Application Layer

Transport Layer

Internet Layer

DNS

© 1999 Scenix Semiconductor, Inc. All rights reserved. - 2 - www.scenix.com

PPP/UDP Virtual Peripheral Implementation AN23

3.0 The Point-to-Point Protocol (PPP)

3.1 Overview
PPP provides a mechanism for encapsulating multiple
protocols over point-to-point links. Usually PPP is used
over serial links such as RS-232 or telephone lines (with
the use of a modem). The bulk of PPP is defined in two
Requests for Comments (RFC) documents, RFC1661
and RFC1662, published by the Internet Engineering
Taskforce (IETF). RFC1661 describes the option negoti-
ation mechanism while RFC1662 defines a method for
using PPP with HDLC framing. RFC1662 also describes
a method for data transparency and a frame check
sequence (FCS) for detecting transmission errors.

PPP is a very general protocol and can be used for
almost any protocol, although it is almost always used for
encapsulating TCP/IP over dial-up links.

PPP works between two end-points called ‘peers'. There
is no distinction between the end-points, such as client
and server. As far as PPP is concerned both are equiva-

lent and it is not important which end-point initiates the
connection.

A typical PPP session proceeds as follows:

3.2 PPP Packet Format
The format of a PPP frame is shown below in Figure 3-1.

The frame format may be changed if header compres-
sion is negotiated during link configuration. The PPP Vir-
tual Peripheral does not allow header compression to be
negotiated thus all frames have the format shown below
in Figure 3-1.

3.2.1 Flag, Address, Control

Every frame begins and ends with a flag sequence ($7E).
The address and control fields are described by ISO
4335-1979 HDLC. For PPP they are the constants $FF
and $03.

3.2.2 Protocol

The protocol field is one or two bytes (in fact all the proto-
col numbers used for PPP are two bytes). This field indi-
cates the protocol contained in the frame and thus how it
should be interpreted. The protocol numbers relevant for
this document are shown in Table 3-1.

3.2.3 Information

The content of the information field depends on the link
state. The information field contains the negotiation
options or IP packets. The maximum length of the field
can be negotiated, but defaults to 1500 bytes.

3.2.4 Frame Check Sequence (FCS)

The FCS field holds a 16-bit CCITT-CRC to check for
errors in transmission of the frame. The FCS is computed
over the entire frame between the flag sequences and
without the application of transparency (i.e. over the raw
frame). An algorithm for computing the FCS using a
lookup table is given in RFC1662. To conserve ROM
space the PPP Virtual Peripheral uses a novel byte-at-a-
time algorithm.

1. The connection is initiated by one end-point request-
ing configuration.

2. Both end-points simultaneously negotiate the link pa-
rameters using the Link Control Protocol (LCP).

3. A network connection is opened by the initiating end-
point using a Network Control Protocol (NCP).

4. Data packets are transferred between the end-points.
5. The connection is closed.

Figure 3-1. PPP Frame Format

Flag
$7E

Address
$FF

Control
$03

Protocol
16 bits

Information
...

FCS
16 bits

Flag
$7E

Table 3-1. Protocol Numbers

$0021 Internet Protocol

$8021 Internet Protocol Control Protocol (IPCP)

$C021 Link Control Protocol (LCP)

$C023 Password Authentication Protocol (PAP)

$C223 Challenge Handshake Authentication Protocol (CHAP)

© 1999 Scenix Semiconductor, Inc. All rights reserved. - 3 - www.scenix.com

AN23 PPP/UDP Virtual Peripheral Implementation

3.3 Transparency
Before a frame is transmitted extra escape characters
are added to ensure that any data with the same value as
the flag sequence or other control characters used by the
link won't cause confusion. The transparency algorithm
works on every character in the frame, including the FCS
but, excluding the start and stop flag sequences. The
control escape sequence is defined as $7D. Any instance
of the control escape or the flag sequence in the frame
are prefixed with the control escape character before
being transmitted. Also, any bytes with a value less than
$20 are xored with $20 and prefixed with a control
escape. This is to ensure that control characters in the
data can be distinguished from control characters used
for tasks such as hand-shaking (XON/XOFF).

As an example, the frame
7E FF 03 C0 21 02 01 00 00 45 0A 7E

becomes
7E FF 7D 23 CO 21 7D 22 7D 21 7D 20 7D 20 45 7D 2A 7E

with transparency applied.

The control characters to which transparency is applied
can be negotiated with LCP. The PPP Virtual Peripheral
uses only the default transparency described above and
will not allow any other configuration to be negotiated.

3.4 Option Negotiation
Several parameters of the link can be negotiated during
initiation of a connection. These parameters include such
things as the maximum frame size, the control characters
to be escaped, authentication parameters, link quality,
transparency characters and header compression. To
keep code size to a minimum the PPP Virtual Peripheral
insists that the peer accept default settings for all param-
eters. In this case negotiation is simplified, but still neces-
sary for confirming that both end-points can support the
default settings. Since PPP implementations must sup-
port the default configuration in order to be compliant this
will not prevent the PPP Virtual Peripheral from commu-
nicating with any other PPP implementation. The negoti-
ation protocol is called Link Control Protocol (LCP).

3.5 Negotiation State Machine
The diagram below shows the option negotiation state
machine used in the PPP Virtual Peripheral. This is a
substantial simplification of the state machine in
RFC1661 but will still inter-operate with any other PPP
implementation. There are four states in the state
machine. The initial state is state 1. (The state numbering
is not sequential so that it matches with the state transi-
tion table in the RFC.) Each transition has associated
with it a condition and an action. The condition (shown in
upper case) must be true for the transition to be followed.
The action (in lower case) is executed when the transition
is taken.

Conditions Actions

RCR_GOOD Received an acceptable configure request scr Send a configure request

RCR_BAD Received an unacceptable configure request sca Send a configure acknowledge

TO_GOOD Timer expired but counter > 0 scn Send a configure reject

TO_BAD Timer expired by counter = 0 exit Exit the state machine

RCA Received a configure acknowledge

LCP Doing LCP negotiation

IPCP Doing IPCP negotiation

© 1999 Scenix Semiconductor, Inc. All rights reserved. - 4 - www.scenix.com

PPP/UDP Virtual Peripheral Implementation AN23

.

Once the options have been negotiated for the link the
end-points must then negotiate a compatible network
protocol (in this case the desired protocol is IP). The net-
work negotiation protocol is called Internet Protocol Con-
trol Protocol (IPCP). IPCP uses the same negotiation
mechanism as LCP so to save code space they are
implemented in the same state machine.

Once LCP negotiation is finished the machine switches
to IPCP negotiation and goes back to the ReqSent state.
Only when the Opened state is reached during IPCP
negotiation is the link ready for IP packets.

Figure 3-2. PPP Option Negotiation State Machine

TO_BAD, exit

RCR_GOOD, sca

ReqSent

6
AckRxd

7

AckSent

8
Opened

9

IPCP

RCA

LCP

TO_GOOD,
scr

TO_GOOD, scr

RCR_BAD, scn

RCR_GOOD, sca

RCA

RCR_BAD, scn

RCR_GOOD,
sca

TO_BAD, exit

RCR_BAD, scn

TO_BAD, exit

Initial

1
sca

© 1999 Scenix Semiconductor, Inc. All rights reserved. - 5 - www.scenix.com

AN23 PPP/UDP Virtual Peripheral Implementation

4.0 Internet Protocol (IP)
For the purposes of this technical note IP is used merely
for adding addressing information to the packets being
transferred. Other IP options, such as fragmentation and
quality of service are ignored.

4.1 IP Packet Format
Each IP packet consists of a header, followed by zero or
more data bytes. The header looks like the following:

The important fields for the PPP Virtual Peripheral are
the total length, protocol, header checksum, source
address and destination address. As its name suggests
the length field contains the total length of the IP packet,
including the header. The length of the data can be com-
puted using the header length (IHL) which is the number
of 32 bit words in the header. The header can be longer
than five words if there are any options attached. The
PPP Virtual Peripheral will not accept IP packets with
options. The protocol field indicates the type of data con-
tained in the rest of the packet.

The protocols of interest to us are ICMP (1) and UDP
(17). The IP checksum is computed over the header only.
It is the ones complement of the ones complement sum
of the 16 bit words in the header. The source and desti-
nation addresses are standard 32 bit Internet addresses
which are usually written in the A.B.C.D notation. All
multi-byte words in the IP header (and in fact all TCP/IP
protocols) are in network-byte-order which is big-endian
(most significant byte first). For more information about
IP see “Internetworking with TCP/IP”, Prentice-Hall,
1995, by Douglas E. Comer.

Figure 4-1. Internet Protocol Header

Version IHL Type of service Total length

Identification Flags Fragment offset

Time to live Protocol Header checksum

Source address

Destination address

241680

© 1999 Scenix Semiconductor, Inc. All rights reserved. - 6 - www.scenix.com

PPP/UDP Virtual Peripheral Implementation AN23

5.0 Internet Control Message Protocol (ICMP)
ICMP is not considered as a separate layer in the TCP/IP
stack, but rather an extension to IP. For the PPP Virtual
Peripheral ICMP will be used to provide a response to
the standard ping tool. Strictly speaking every IP imple-
mentation must implement all ICMP messages. How-
ever, correct operation is still possible without them so
the PPP Virtual Peripheral only implements the echo-
request and echo-reply packets.

For every echo-request that is received an echo-reply will
be generated.

5.1 ICMP Packet Format
The type field indicates whether the packet is a request
(8) or a reply (0). The checksum is computed over the
ICMP packet only. The identifier and sequence number
are used by the sender to match up requests and replies.
An echo request can contain data which is simply copied
to the reply.

Here is an example echo reply packet:

45 00 00 54 00 1A 00 00
0F 01 38 74 C0 A8 01 01
82 D8 2E 9A 00 00 3D DA
BC 52 1A 00 3E DB BF 36
F8 C5 03 00 08 09 0A 0B
0C 0D 0E 0F 10 11 12 13
14 15 16 17 18 19 1A 1B
1C 1D 1E 1F 20 21 22 23
24 25 26 27 28 29 2A 2B
2C 2D 2E 2F 30 31 32 33
34 35 36 37

This packet is from 192.168.1.1 (C0 A8 01 01) to
130.216.46.154 (82 D8 2E 9A). It contains 56 bytes of
data.

Figure 5-1. ICMP Echo-Request and Echo-Repl y Packet Format

0 8 16 24

Type Code Checksum

Identifier Sequence number

Data ...

© 1999 Scenix Semiconductor, Inc. All rights reserved. - 7 - www.scenix.com

AN23 PPP/UDP Virtual Peripheral Implementation

6.0 The User Datagram Protocol (UDP)
UDP is an unreliable, connectionless transport mecha-
nism. The word unreliable shouldn’t be taken to mean
that UDP often loses packets. It is more an indicator of
the fact that there is no acknowledgment for packets and
so delivery is not guaranteed. UDP is used for common
Internet services such as the Domain Name Service
(DNS). It is suitable for short transaction client/server
applications or where a station transmits period informa-
tion. For instance a weather monitoring station might
periodically transmit the temperature and humidity. If a
packet is lost there is no problem because another will be
transmitted shortly anyway.

UDP provides a finer addressing scheme that Internet
address through the use of port numbers. A packet
comes from a source port and is delivered to a destina-
tion port.

6.1 UDP Packet Format
Figure 6-1 shows the UDP Packet Format. Port numbers
are specified as 16 bit numbers. The length includes the
UDP header and data only. The checksum is computed
over the UDP header and data. If the checksum is zero
then it is ignored. Since the SX doesn’t buffer packets,
computing a checksum over the packet contents is
impossible when the checksum must be transmitted in
the packet header.

Here is an example UDP packet containing the data
“ABC”:

45 00 00 1F 00 02 00 00
0F 11 38 B1 C0 A8 01 01
82 D8 2E 9A 04 01 04 00
00 0B 00 00 61 62 63

This packet is from port 1025 on machine 192.168.1.1 to
port 1024 on machine 130.216.46.154.

Figure 6-1. UDP Packet Format

0 8 16 24

Source port Destination port

Length Chechsum

Data ...

© 1999 Scenix Semiconductor, Inc. All rights reserved. - 8 - www.scenix.com

PPP/UDP Virtual Peripheral Implementation AN23

7.0 Using PPP/UDP in an Application
One of the biggest considerations when designing packet
oriented communications software is whether or not to
buffer the packets (this is separate from buffering per-
formed by the UART). With only 136 bytes of RAM avail-
able on the SX, buffering even a single ICMP packet
would require half of the available memory. Communica-
tion is full-duplex meaning that both transmit and receive
buffers would be necessary. Hence even implementing
ICMP would require more RAM than the SX has. Since
the buffer size would be limited this would also place a
constraint on the maximum packet size the software
could accommodate. The advantage of using a buffer is
that computing checksum becomes much easier and
there are no problems with regenerating data if a packet
must be retransmitted. The software described in this
technical note doesn’t use packet buffering. Instead it
processes both received and transmitted data streams a
byte at a time.

7.1 API
The source code is divided into a large number of sub-
routines. Those routines that are likely to be used by
application code form the network stack API and are
described below. All of these routines should be called
with a call instruction. They all return with a retp
instruction. You should assume that every API call will
change the bank and won’t preserve the W register.
Some routines expect a parameter in the W register and
some will use W or the zero flag to indicate a result.
Since the routines are deeply nested care should be
taken that application code that is also deeply nested
doesn’t overflow the call stack.

7.2 Physical La yer
The physical layer handles communication with the
UART Virtual Peripheral.

7.3 PPP
The PPP layer handles the PPP option negotiation protocols.

PhyTxByte Add a byte to the UART’s transmit queue. PPP transparency is added at this point and the
byte is accumulated into the FCS.

PhyTxByteNoFCS Add a byte to the transmit queue. Transparency is added but the FCS is not calculated.
This is for transmitting the FCS and flag bytes.

PhyRxTest Test to see if there are any bytes waiting in the receive queue. This routine does not block
if there are no bytes waiting. The zero flag is set if at least one byte is available, otherwise
it is cleared.

PhyRxByte Return a byte from the receive queue. If there are no bytes waiting then the routine blocks
until a byte is received. Any transparency bytes are removed and the receive FCS is accu-
mulated.

ModemConnect Required when connecting to Windows® using Dial-up Networking (DUP). DUP needs to
think that it is talking to a modem. This routine pretends to be accept the standard AT
command set. In reply to any command from the peer starting with AT it replies with OK. In
response to any command starting with ATDT it replies with CONNECT and returns. Once
ModemConnect has returned DUP thinks that it is talking with the remote host and not its
local modem.

PPPOpen Negotiate and open a PPP connection with the peer. If a connection is successfully
opened then the linkUp bit in the PPPFlags register will be set.

PPPRxData Once the PP link is up PPPRxData is used by the IP routines to receive IP packets. This
routine accepts a PPP frame header. If the frame contains LCP or IPCP data then it is han-
dled internally. If the frame contains IP data then the zero flag is set and the routine
returns. At this point the next byte in the receive queue will be the first byte of the IP
header.

PPPClose Close the open PPP connection. A terminate-request packet is sent to the peer and the
link state machine is reset. The routine does not wait for the terminate-ack packet from the
peer so the peer may require a timeout period before it is ready for another connection.

PPPClosePacket Send the trailing bytes of a PPP frame. Every PPP frame ends with 16 bits of FCS and a
flag character. This routine sends the FCS and flag character.

PPPCheckFCS Check that the FCS for a received packet is valid. The FCS must be the next two bytes to
be received. The zero flag is set if the frame is valid and cleared otherwise.

© 1999 Scenix Semiconductor, Inc. All rights reserved. - 9 - www.scenix.com

AN23 PPP/UDP Virtual Peripheral Implementation

7.4 IP
At the IP layer the IP header is decoded, the received protocol determined and ICMP echo requests are handled.

7.5 UDP
These are utility routines to make it easier to send and receive UDP packets.

IPReceivePacket Process incoming packets. This routine should be called periodically by the application to
ensure that incoming data is processing. If there is no data in the receive queue then the
routine returns immediately. If there is data waiting then control is passed to PPPRxData to
receive the PPP frame header. If the incoming data was not an IP data packet then it is
processed by PPPRxData and IPReceivePacket returns.

If the incoming data is an IP packet then the complete IP header is read into memory and
the protocol decoded. If the packet is an ICMP echo request then an echo reply is gener-
ated and sent. Otherwise the routine returns setting values in IPFlags to indicate how the
packet should be processed. If it is a UDP packet then IPFlags.UDPPacket will be set. If
it is a TCP packet then IPFlags.TCPPacket will be set.

IPStartPacket Transmit an IP packet header. The information about the packet is read from the following
registers which must be set before the call:

IPLength Length of the data to be sent.

IPProtocol Protocol to be sent.

IPDestAddress1 Destination address of the packet.

IPDestAddress2

IPDestAddress3

IPDestAddress4

The length field should be the length of the packet data and does not include the IP header.

IPRxClosePacket Consume the rest of an incoming packet that is not processed by the application.
IPTxData This is an alias for PhyTxByte .
IPRxData This is an alias for PhyRxByte .

UDPStartPacket Start sending a UDP packet. First IPStartPacket is called to send the IP header. Then
the UDP header is transmitted. The variables UDPSrcPorth , UDPSrcPortl , UDPDest-
Porth , and UDPDestPortl must be set to indicate the ports to use. IPLength should
be set to the length of the data to be sent in the packet (not including the UDP header).

UDPRxHeader Decode a UDP header. Once IPReceivePacket has indicated that a UDP packet is
being received UDPRxHeader should be called to receive the UDP header. The port fields
in the header are saved into their converse registers. I.e. the source port is saved in UDP-
DestPort and the destination port is saved in UDPSrcPort . This is to make it easier to
reply to a packet.

© 1999 Scenix Semiconductor, Inc. All rights reserved. - 10 - www.scenix.com

PPP/UDP Virtual Peripheral Implementation AN23

7.6 Writing Application Code
The following example illustrates how the API could be used in an application. This application uses UDP to read and
write file registers on the SX. It is described in more detail in a later section.

If we are communicating with Windows Dial-up Networking then pretend to be a modem.

IF WIN95 = 1
call @ModemConnect ; Pretend we are a modem.

ENDIF

Try and open the PPP link. If the link is successfully opened then PPPFlags.linkUp will be set.

call @PPPOpen
sb PPPFlags.linkUp ; Is the link up?
jmp :done ; No.

Now loop indefinitely receiving and processing IP packets.

:loop call @IPReceivePacket

See if the received packet is UDP.

bank IPVars
snb IPFlags.UDPPacket
jmp :UDPRx

If it isn’t UDP then we aren’t interested and the next line will consume it.

call @IPClosePacket ; Consume the rest of the packet.
jmp :loop ; Loop forever.

The next code fragment interprets the received UDP packets.

:UDPRx
call @UDPRxHeader ; Receive the UDP header.
bank UDPVars
cse UDPSrcPorth,#(DemoPort&$ff00)>>8 ; Check the port.
jmp :gobble
cse UDPSrcPortl,#DemoPort&$00ff
jmp :gobble

Generally, different UDP based applications are differentiated by the port number they use. For this demonstration port
280 has been chosen arbitrarily. Each incoming packet is checked to see if it is for port 280. If it is not for this port it is
discarded. The next code reads the first byte from the packet data and decides what to do.

; OK the packet is for the right port.
call @IPRxData
mov Scratch0,w
cje Scratch0,#DemoMemDump,:memdump ; Is the command a dump?
cje Scratch0,#DemoMemSet,:set ; Is the command a set?
cje Scratch0,#DemoMemGet,:get ; Is the command a get?
cje Scratch0,#DemoHello,:hello ; Is the command a hello?

Discard an unwanted packet.

:gobble
call @IPRxClosePacket
jmp :loop

© 1999 Scenix Semiconductor, Inc. All rights reserved. - 11 - www.scenix.com

AN23 PPP/UDP Virtual Peripheral Implementation

To handle a get request we read the address from the received packet and then reply with a packet containing the byte
at that address.

:get
bank IPVars
mov IPLength,#1
mov IPDestAddress1,IPSrcAddress1 ; Copy the address of the
mov IPDestAddress2,IPSrcAddress2 ; sender.
mov IPDestAddress3,IPSrcAddress3
mov IPDestAddress4,IPSrcAddress4

Start by setting up the IP packet header variables. The return packet will contain only one data byte and will have the
same destination address as the source of the packet just received. There is no need to set the protocol because it will
be the same as the received packet.

Start transmitting the reply UDP packet. This sends the PPP frame header, IP packet header and UDP header.

call @UDPStartPacket ; Start the reply packet.

We read the address from the received packet and use indirect addressing to get the required register. This value is
then transmitted as the data of the reply packet.

call @IPRxData ; Read the address.
mov FSR,w ; Use indirect addressing.
mov w,IND ; Load the byte.
call @IPTxData ; Transmit it.

The packet is closed by sending the PPP FCS and flag sequence. We are now ready to process the next incoming
packet so return to the loop.

call @PPPClosePacket ; Finish the packet.
jmp :loop

The code for dumping and setting memory continues in the same way.

© 1999 Scenix Semiconductor, Inc. All rights reserved. - 12 - www.scenix.com

PPP/UDP Virtual Peripheral Implementation AN23

7.7 Caveats and Limits
There are a few limitations imposed by the IP stack.
These are a natural consequence of the limited
resources available on an 8-bit micro-controller.

• Packets are limited to 256 bytes. This is because only
the LSB of the packet length is used. Longer packets
could be accommodated by using a second byte to
store the length.

• Closing a PPP connection may require forcing the peer
to timeout (about 9 seconds). This is because the SX
doesn’t send a terminate-acknowledge packet.

• Fragmented IP packets are not handled at all. However
fragmentation is unlikely to occur if packet sizes are
limited to 256 bytes.

• The UDP checksum is not calculated. The CRC type
FCS provided by the PPP layer is much better than the
simple, summed IP checksum anyway. Calculating the
UDP checksum would be difficult without buffering
packets since it is computed over the data but transmit-
ted in the header. UDP allows the checksum to be ig-
nored if the checksum field is set to zero.

• Echo requests are the only ICMP packets handled.

7.7.1 Configuring the PPP Peer

To connect to the SX the peer must be configured with
some suitable PPP settings. The next two sections
describe how to do this for Windows, Windows NT® and
Linux.

7.7.2 Windows 95/NT

Dial-up Networking and TCP/IP must be installed. In the
network control panel install the Dial-up Adapter and
make sure it is bound to TCP/IP only. Create a new
modem in the Modems control panel. Avoid the ‘Detect
my modem…’ wizard and choose it yourself. It should be
a standard 19,200 baud modem connected to the same
COM port the SX will be connected to. In the System
control panel for the COM port, under the advanced set-
tings, make sure that the FIFO is turned OFF.

Now create a new connection in the Dial-up Networking
window. It should use the new modem you just created. It
doesn’t matter what the telephone number is. You need
to specify the IP address for the local machine in the
same subnet as the SX. For example, by default the code
comes with the IP address 192.168.11.1 for the SX so
set your computer to 192.168.11.2. Any options for IP
compression, header compression, software compres-
sion, CHAP or PAP should be OFF. The default gateway
on local network should be ON. There is no need to set
DNS addresses.

Now the connection is ready to go. Reset the SX then
open up the connection document and click ‘Connect’. A
PPP connection will be negotiated. Once the link is up try
typing ping 192.168.11.1 into a DOS window. You
should see a reply from the SX with the round trip time. If
Dial-up Networking reports that a PPP connection has
been opened but ping doesn’t work then your routing
table is probably not set up correctly.

You may wish to read the following documents from the
Microsoft® Knowledge Base (at support.microsoft.com) if
you have any problems getting a PPP connection:

• How to enable PPP logging under Windows NT:
Q115929

• How to interpret the ppplog.txt file: Q156435
Two common problems are: not disabling the UART
FIFOs on the PC and using the wrong type of cable. The
FIFO must be disabled because even when the SX drops
the CTS line the PC continues to transmit the data in the
FIFO, which is enough to over-run the SX’s receive
buffer.

The serial cable should be straight through (not null
modem) and must have the rx, tx, rts, cts and gnd pins
connected.

7.7.3 Linux

The SX has been tested under version 2.0.30 of the
Linux kernel with pppd 2.3.4.

Create a script to start the PPP daemon which looks
something like the following:

Start a PPP server running on this
machine.
setserial /dev/cua0 uart 16450
/usr/sbin/pppd debug kdebug 7 19200
/dev/cua0 passive \
persist crtscts 192.168.11.2:

The setserial line tells the PC to use a 16450 type
UART which doesn’t contain a FIFO. This effectively dis-
ables the PC’s UART FIFO. This may not work on all
PCs.

You must be root to run the PPP daemon. Reset the SX
and run the script; a PPP connection will be negotiated.
To see if the PPP layer is up run /sbin/ifconfig . It
should list the network interface PPP0 which is the PPP
connection to the SX. As with Windows, ping can be
used to check the connection.

If there are any problems, inspecting /var/log/debug and
/var/log/messages can indicate where the PPP negotia-
tion failed.

© 1999 Scenix Semiconductor, Inc. All rights reserved. - 13 - www.scenix.com

AN23 PPP/UDP Virtual Peripheral Implementation

7.8 Demo Application
As a demonstration of the PPP/UDP code a simple appli-
cation has been developed. The SX will respond to
requests to read and write the file registers. The com-
mands are encapsulated in UDP packets and so can be
sent from any computer connected to the Internet (pro-
vided intervening firewalls don’t block the packets). Since
there is no standard application for sending UDP packets
a short ‘C’ program is shown in the appendices which will
communicate with the SX.

Every packet received on port 280 of the SX will be
treated as a command. The first byte of the UDP packet
determines what action will be taken:

• If it is $10 then a reply packet will be generated contain-
ing the full SX register set.

• If it is $20 then the next byte will be read as an address
and the third byte in the packet will be written to that ad-
dress. In this way a file register can be modified re-
motely.

• If it is $30 then the next byte is read as an address. The
register at that address is returned in a reply packet.

Here is an interaction with the SX using this demo pro-
gram:

C:\Demo>sxdemo -d 192.168.11.1
Dumping the SX's register file
Connecting to local port 1024
Using port 280 on the SX
Sending command
Starting receive
$ 0: 8
$ 1: 8
$ 2: 0
$ 3: 0
$ 4: 0
$ 5: 0
$ 6: 0
$ 7: 0
$10: 14 02 00 18 00 11 7D 00
$11: 09 11 00 01 00 41 30 00
$12: 00 C0 00 00 00 D0 86 00
$13: 0E A8 00 04 00 09 27 00
$14: 0B 01 00 C8 00 10 7E 00
$15: 00 02 00 01 00 00 67 00
$16: 00 DC 00 20 00 18 70 00
$17: 03 27 00 D9 00 7E 5E 00
$18: 00 BD 00 4C 00 00 67 00
$19: 00 02 00 00 00 D5 70 00

$1A: E4 C0 00 00 00 D2 5E 00

$1B: EA A8 00 00 00 03 67 00
$1C: 5E 01 00 00 00 D9 70 00
$1D: FE 02 00 00 00 DA 5E 00
$1E: 01 1D 00 00 00 07 5E 00
$1F: 02 00 00 00 00 00 7E 00

C:\Demo>sxdemo -g 144 192.168.11.1
Getting the register at address 90
Connecting to local port 1024
Using port 280 on the SX
Sending command
Starting receive
Register value: 00

C:\Demo>sxdemo -s 144 12 192.168.11.1
Setting the register at address 90 to
0C
Connecting to local port 1024
Using port 280 on the SX
Sending command
Set command sent

C:\Demo>sxdemo -g 144 192.168.11.1
Getting the register at address 90
Connecting to local port 1024
Using port 280 on the SX
Sending command
Starting receive
Register value: 0C

© 1999 Scenix Semiconductor, Inc. All rights reserved. - 14 - www.scenix.com

PPP/UDP Virtual Peripheral Implementation AN23

7.8.1 Source Code Description

The code uses a software UART Virtual Peripheral to
implement the physical communications layer. A second
UART Virtual Peripheral can optionally be used for trans-
mitting debug information. The existence of the debug
UART is controlled by the define DEBUG which is set or
unset at the top of the source code. A second define
(WIN95) is used to indicate whether the PPP Virtual
Peripheral will be talking to a Windows 95 PC (which
requires modem AT command set emulation).

The interrupt service routine is used to run the two UART
Virtual Peripheral modules. The rest of the network stack
runs in the mainline code. It is up to the application code
to initiate a PPP connection and then to ask for an incom-
ing packet to be received and processed.

Figure 7-1 shows how the file registers are used by the
Virtual Peripheral. At least 32 bytes of banked registers
as well as half the global registers are available to the
application code.

Figure 7-1. File Register Usage

$00 $10 $30 $50 $70 $80 $B0 $D0 $F0

P
P

P
 V

a
ria

b
le

s

IP
 V

aria
ble

s

U
D

P
 V

a
riab

les

P
P

P
 U

A
R

T

P
P

P
 U

A
R

T
 B

u
ffe

rs

D
ebug U

A
R

T

Scratch

© 1999 Scenix Semiconductor, Inc. All rights reserved. - 15 - www.scenix.com

AN23 PPP/UDP Virtual Peripheral Implementation

7.8.2 Flowcharts

Figures 7-2 and 7-3 show the mainline routine and the
PPP negotiation routine flowcharts.

The mainline routine is entered after processor reset. It
initializes the registers used by the UARTs before the
application code takes over.

The application code will then initiate a PPP connection.
If the connection is successful the main loop will start.

Each iteration the loop processes one incoming IP
packet.

Figure 7-2. Mainline Routine

Start

Initialise Processor
ports/registers

Initialise PPP UART
VP

Initialise Debug
UART VP

Wait for Windows
modem connect

Connection
successful?

No

Yes

Negotiate PPP
connection

Receive packet
header

Was it a PPP
terminate?

No

Yes

Process application
packet

End

MAINLINE ROUTINE

© 1999 Scenix Semiconductor, Inc. All rights reserved. - 16 - www.scenix.com

PPP/UDP Virtual Peripheral Implementation AN23

The PPP negotiation routine waits for a byte to be
received. Each byte is processed by the PPPReceive
routine. When enough of a frame has been received to
determine the frame type an event is returned to be pro-
cessed by the PPP state machine.

Negotiation ends when the PPP link is up, too many time-
outs have been received or acceptable options cannot be
negotiated with the peer.

Figure 7-3. PPP Negotiation Routine

Start

Reset state machine

Byte in receive
queue?

Receive byte and
compute event

Restart timer
expired?

Is an event
pending?

No

Yes

Signal timer expired
event

Yes

No

No

Yes

Process event with
state machine

No

Is PPP up? Yes End

Restart count
expired?

No Yes End

PPP NEGOTIATION
ROUTINE

© 1999 Scenix Semiconductor, Inc. All rights reserved. - 17 - www.scenix.com

AN23 PPP/UDP Virtual Peripheral Implementation

7.8.3 The Hardware

Two UART Virtual Peripheral modules are used by the
PPP/UDP code. The first is for the PPP physical layer
and the second is to provide a trace for debugging infor-
mation.

To negotiate PPP settings with a PC it is necessary to
use hardware flow control on the PPP UART. Since PC
has much larger buffers than the SX it is likely that the SX
might lose data. RTS/CTS flow control is used.

The debugging UART is transmit only and so doesn’t
need flow control.

On this demonstration board port C of the SX is available
to connect peripherals. Port B is used by the UARTs and
port A controls the status LEDs. The five LED indicate
what the board is doing:

The power input on the demonstration board requires 9V
DC or 7V AC.

PWR Power
ERR An error has occurred
TR Data is being transmitted or received by the

PPP UART
UP The PPP link is up
NEG PPP Negotiation is in progress

PPP/UDP Virtual Peripheral Implementation AN23
Appendix A: Circuit Diagram

1
2

3
44

3
2

1

D C B A

R
T

C
C

1
V

dd
2

V
ss

4

R
A

0
6

R
A

1
7

R
A

2
8

R
A

3
9

R
B

0
10

R
B

1
11

R
B

2
12

R
B

3
13

R
B

4
14

R
B

5
15

R
B

6
16

R
B

7
17

R
C

0
18

R
C

1
19

R
C

2
20

R
C

3
21

R
C

4
22

R
C

5
23

R
C

6
24

R
C

7
25

O
S

C
2

26

O
S

C
1

27

/M
C

LR
28

IC
2

S
X

28

+
5V

R
2

10
k S
W

1

R
E

S
E

T

R
C

0
R

C
1

R
C

2
R

C
3

R
C

4
R

C
5

R
C

6
R

C
7

+
C

7
1u

F

+
C

8
1u

F

+
C

4
1u

F
C

5
1u

F

C
6

1u
F

1 6 2 7 3 8 4 9 5

C
N

3

P
P

P

R
B

T
X

0

R
B

R
X

0

+
5V

+
5V

+
5V

C
N

1

P
S

U

R
C

0
R

C
1

R
C

2
R

C
3

R
C

4
R

C
5

R
C

6
R

C
7

1 2 3 4 5 6 7 8 9 10

C
N

5

P
O

R
T-

C

X
1

R
E

S
O

N
AT

O
R

R
B

R
T

S
0

R
B

C
T

S
0

D
3

E
R

R

D
4

T
R

D
5

U
P

D
6

N
E

G

R
4

33
0R

R
5

33
0R

R
6

33
0R

R
7

33
0R

R
A

0

R
A

1

R
A

2

R
A

3

R
A

0
R

A
1

R
A

2
R

A
3

C
1+

10

V
+

11
C

1-
12

C
2+

13

C
2-

14

V-
15

T
2o

ut
1

R
4i

n
16

R
4o

ut
17

T
2i

n
18

T
1i

n
5

R
3o

ut
22

R
3i

n
23

T
1o

ut
2

G
N

D
8

V
C

C
9

T
4o

ut
20

R
2i

n
3

R
2o

ut
4

T
4i

n
21

T
3i

n
19

R
1o

ut
6

R
1i

n
7

T
3o

ut
24

IC
3

H
IN

23
8

1 6 2 7 3 8 4 9 5

C
N

4

D
E

B
U

G

R
B

R
T

S
1

R
B

T
X

1
R

B
C

T
S

1

R
B

R
X

1

T
X

0

R
T

S
0

T
X

1

R
T

S
1

R
X

0

R
X

1

C
T

S
0

C
T

S
1

R
X

0

R
X

1

R
T

S
0

R
T

S
1

T
X

0

T
X

1

C
T

S
0

C
T

S
1

+
5V

D
2

P
W

R
R

3

33
0R

+
5V

C
3

0.
1u

F

+
5V

A
C

1

A
C

2

+
3 4

D
1

B
R

ID
G

E

IN
1

O
U

T
3

IC
1

78
05

+
C

1
47

uF

+
5V

+
C

2
15

0u
F

R
1

33
k

+
5V

O
S

C
1

O
S

C
2

V
dd

V
ss

C
N

2

S
X

-K
E

Y

R
B

T
X

0

R
B

T
X

1

R
B

R
X

0

R
B

R
X

1

R
B

R
T

S
0

R
B

R
T

S
1

R
B

C
T

S
0

R
B

C
T

S
1

+
5V
© 1999 Scenix Semiconductor, Inc. All rights reserved. - 18 - www.scenix.com

© 1999 Scenix Semiconductor, Inc. All rights reserved. - 19 - www.scenix.com

AN23 PPP/UDP Virtual Peripheral Implementation

Appendix B: UDP ‘C’ Code
#include <sys/types.h>

#include <errno.h>

#include <stdio.h>

#include <mem.h>

#define WIN32

#ifdef WIN32

#include <winsock.h>

#else

#include <sys/socket.h>

#include <netinet/in.h>

#endif

#define BUF_LEN 1024

#define DUMP_COMMAND0x10

#define SET_COMMAND0x20

#define GET_COMMAND0x30

#define HELLO_COMMAND0x40

extern int errno;

void print_help(char *prog) {

 printf("%s [-hedsg] ip - Send and receive UDP packets to an SX microcontroller.\n", prog);

 printf(" ip IP address of the SX in x.x.x.x notation\n");

 printf(" -h This help message.\n");

 printf(" -e Get the SX's hello message.\n");

 printf(" -d Dump the SX's register file.\n");

 printf(" -s addr value Set the register at the address to a certain value.\n");

 printf(" -g addr Get the value at the given address.\n");

 printf(" For the -s and -g commands the values must be given in decimal\n");

}

unsigned int decodeAddress(char *a) {

 char *dot;

 unsigned int addr = 0;

 dot = strchr(a,'.');

 if (!dot)

 return 0;

 *dot = '\0';

 addr = atoi(a)<<24;

 a = dot + 1;

 dot = strchr(a,'.');

 if (!dot)

 return 0;

 *dot = '\0';

 addr |= atoi(a)<<16;

 a = dot + 1;

 dot = strchr(a,'.');

 if (!dot)

 return 0;

© 1999 Scenix Semiconductor, Inc. All rights reserved. - 20 - www.scenix.com

PPP/UDP Virtual Peripheral Implementation AN23

 *dot = '\0';

 addr |= atoi(a)<<8;

 a = dot + 1;

 addr |= atoi(a);

 return addr;

}

int main(int argc, char *argv[]) {

 int err, i, j;

 int clientLen, lenReceived, commandLen;

 unsigned char buffer[BUF_LEN];

 int sock;

 struct sockaddr_in addr, clientAddr;

 unsigned char commandBuf[3];

 char command;

 unsigned char address, data;

 unsigned int ipAddr;

#ifdef WIN32

 WSADATA lpWSAData;

#endif

 /* Decode the command line options. */

 if (argc > 1) {

 if (!strcmp(argv[1], "-d")) {

 command = 'd';

 commandBuf[0] = DUMP_COMMAND;

 commandLen = 1;

 printf("Dumping the SX's register file\n");

 }

 else if (!strcmp(argv[1], "-e")) {

 command = 'e';

 commandBuf[0] = HELLO_COMMAND;

 commandLen = 1;

 printf("Reqesting hello message\n");

 }

 else if (!strcmp(argv[1], "-s") && argc == 4) {

 command = 's';

 address = atoi(argv[2]);

 data = atoi(argv[3]);

 commandBuf[0] = SET_COMMAND;

 commandBuf[1] = address;

 commandBuf[2] = data;

 commandLen = 3;

 printf("Setting the register at address %2.2X to %2.2X\n", address, data);

 }

 else if (!strcmp(argv[1], "-g") && argc == 3) {

 command = 'g';

 address = atoi(argv[2]);

 commandBuf[0] = GET_COMMAND;

 commandBuf[1] = address;

 commandLen = 2;

 printf("Getting the register at address %2.2X\n", address);

 }

 else {

© 1999 Scenix Semiconductor, Inc. All rights reserved. - 21 - www.scenix.com

AN23 PPP/UDP Virtual Peripheral Implementation

 print_help(argv[0]);

 return 1;

 }

 }

 else {

 print_help(argv[0]);

 return 1;

 }

#ifdef WIN32

 /* Windows requires that winsock be initialized. */

 err = WSAStartup (0x0101, &lpWSAData);

 if (err != 0) {

 printf("Cannot open WinSock\n");

 return 1;

 }

#endif

 /* Get the IP address of the destination. */

 ipAddr = decodeAddress(argv[argc-1]);

 if (ipAddr == 0) {

 printf("Invalid IP address\n");

 return 1;

 }

 printf("IP address of SX: %d.%d.%d.%d\n", (ipAddr&0xff000000)>>24,

 (ipAddr&0x00ff0000)>>16, (ipAddr&0x0000ff00)>>8, ipAddr&0x000000ff);

 clientLen = sizeof(clientAddr);

 sock = socket(AF_INET, SOCK_DGRAM, 0);

 if (sock < 0) {

 perror("socket");

 return 1;

 }

 memset((char*) &addr, 0, sizeof(addr));

 memset((char*) &clientAddr, 0, sizeof(clientAddr));

 addr.sin_family = AF_INET;

 addr.sin_port = htons(1024);

 addr.sin_addr.s_addr = INADDR_ANY;

 printf("Connecting to local port %d\n", ntohs(addr.sin_port));

 err = bind(sock, (struct sockaddr*) &addr, sizeof(addr));

 if (err == -1) {

 perror("bind");

 return 1;

 }

 clientAddr.sin_family = AF_INET;

 clientAddr.sin_port = htons(280);

 printf("Using port %d on the SX\n", ntohs(clientAddr.sin_port));

 clientAddr.sin_addr.s_addr = htonl(ipAddr);

 printf("Sending command\n");

© 1999 Scenix Semiconductor, Inc. All rights reserved. - 22 - www.scenix.com

PPP/UDP Virtual Peripheral Implementation AN23

 if (sendto(sock, &commandBuf, commandLen, 0, (struct sockaddr*)&clientAddr,

 sizeof(clientAddr)) == -1) {

 perror("sendto");

 return 1;

 }

 if (command == 's') {

 printf("Set command sent\n");

 return 0;

 }

 printf("Starting receive\n");

 lenReceived = recvfrom(sock, &buffer, BUF_LEN, 0, (struct sockaddr*)&clientAddr, &clientLen);

 if (command == 'e') {

 printf("Hello message from the SX: %s\n", &buffer);

 }

 else if (command == 'd') {

 if (lenReceived != 192) {

 printf("No enough data received. Expected 192 bytes.\n");

 return 1;

 }

 for (i = 0; i < 8; i++)

 printf("$%2X: %2X\n", i, buffer[i]);

 for (i = 0; i < 16; i++) {

 printf("$%2.2X: ", i + 16);

 for (j = 0; j < 8; j++)

printf("%2.2X ", buffer[8 + i + (j * 24)]);

 printf("\n");

 }

 }

 else if (command == 'g') {

 if (lenReceived != 1) {

 printf("No enough data received. Expected 1 byte.\n");

 return 1;

 }

 printf("Register value: %2.2X\n", buffer[0]);

 }

 return 0;

}

© 1999 Scenix Semiconductor, Inc. All rights reserved. - 23 - www.scenix.com

AN23 PPP/UDP Virtual Peripheral Implementation

References

Douglas E. Comer, “Internetworking with TCP/IP”, Pren-
tice-Hall, 1995.

© 1999 Scenix Semiconductor, Inc. All rights reserved. - 24 - www.scenix.com

Sales and Tech Support Contact Information

For the latest contact and support information on SX devices, please visit the Scenix Semiconductor website at
www.scenix.com. The site contains technical literature, local sales contacts, tech support and many other features.

1330 Charleston Road
Mountain View, CA 94043

Tel.: (650) 210-1500
Fax: (650) 210-8715

E-Mail: sales@scenix.com
Web Site: www.scenix.com

Lit #: SXL-AN23-04

AN23 PPP/UDP Virtual Peripheral Implementation

